THE RAMAN STUDY OF CERTAIN CARBONATES

NICOLAE BUZGAR¹, ANDREI IONUȚ APOPEI¹

¹ "Al. I. Cuza" University of Iași, Department of Geology, 20A Carol I Blv., 700505 Iași, Romania

Abstract

Some of the most common carbonates have been investigated by non-contact Raman spectroscopy. The synthetic alkali carbonates K_2CO_3 and Na_2CO_3 have also been studied. The Raman spectrum of aurichalcite is different from that of malachite. This spectrum has a characteristic intense band at 1069 cm⁻¹ which is assigned to the v_1 symmetric stretching mode of the carbonate unit. The two low intensity Raman lines of 1485 and 1507 cm⁻¹ may be ascribed to the v_3 asymmetric stretching modes. To the v_4 mode (doubly degenerate symmetric bending) are attributed the values of 706 cm⁻¹ (v_{4a}) and 733 cm⁻¹ (v_{4b}). A number of bands with different intensities are observed in the lowest spectral shift (285, 388, 430, 461 and 498 cm⁻¹). These Raman lines are assigned to the CuO and ZnO stretching and bending vibrations. A single band of the OH-stretching modes is observed at 3344 cm⁻¹.

Key words: nonpolarized Raman spectra, carbonates, alkali carbonates, aurichalcite

e-mail: nicolae.buzgar@uaic.ro